



## Advanced Electronics Technologies: Challenges for Radiation Effects Testing, Modeling, and Mitigation

Kenneth A. LaBel ken.label@nasa.gov

Co-Manager, NASA Electronic Parts and Packaging (NEPP) Program

Lewis M. Cohn

Lewis.Cohn@dtra.mil

**Defense Threat Reduction Agency (DTRA)** 

Presented by Kenneth LaBel at Space Environment Effects Working Group, El Segundo, CA - Nov. 1-3, 2005



## **Outline**



- Emerging Electronics Technologies
- Changes in the commercial semiconductor world
- Radiation Effects Sources
  - A sample test constraint
- Challenges to Radiation Testing and Modeling
  - IC Attributes Radiation Effects Implications
  - Fault Isolation
  - Scaled Geometry
  - Speed
  - Modeling Shortfalls
  - Knowledge Status
- Summary
- Recommendations

## Notes:

1. The emphasis of this presentation is digital technologies and SEE.

2. A discussion of mitigation implications is included in the notes.

Presented by Kenneth LaBel at Space Environment Effects Working Group, El Segundo, CA - Nov. 1-3, 2005

2











| Attributes                 | SEU | MBU | SET | SEFI | SEGR | TID |
|----------------------------|-----|-----|-----|------|------|-----|
| Intelligence               | **  | **  | +   | ++   | •    |     |
| Flexibility                | **  | **  | •   | ***  | 7.   | •   |
| Complexity                 | +++ |     | •   |      | •    | ++  |
| Integration<br>Density     | •   | *** |     |      |      |     |
| Hidden Circuit<br>Features | •   |     | •   | ***  | •    | •   |
| Construction               | **  | **  | **  | ••   | ••   | **  |
| Power                      | •   | +   | **  |      |      |     |
| Speed                      | •   |     | *** |      |      |     |









| Chip Area          | SEE Issue                                                                                                 | Possible SEU Mitigation                                                                  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| Config. Memory     | Single and multiple bit errors corrupting circuit operation, causing bus conflicts (current creep), etc   | · Scrubbing · Partial reconfiguration                                                    |  |  |
| Config. Controller | Improper device configuration can occur if hit during configuration/reconfiguration                       | Partitioned design     Multiple chip voting (Redundancy by using multiple devices)       |  |  |
| CLB                | Logic hits and propagated upsets caused by transients                                                     | Triple modular redundancy (TMR)     Acceptable error rates                               |  |  |
| BRAM               | Memory upsets in user area                                                                                | TMR     Error Detection and Correction (EDAC) scrubbing                                  |  |  |
| Half-latches       | Sensitive structure used in configuration/routing                                                         | Removal of half-latches from design                                                      |  |  |
| POR                | SEUs on POR can cause inadvertent reboot of device                                                        | Multiple chip voting (Redundancy by using multiple device)                               |  |  |
| IOB                | SEUs can cause false outputs to other devices or inputs to logic                                          | Leverage immune Config. Memory cell     Evaluate input SET propagation                   |  |  |
| DCM                | Can cause clock errors that spread across clock cycles                                                    | - TMR<br>- Temporal TMR                                                                  |  |  |
| DSP                | Hard IP that is unhardened that can<br>cause single event functional<br>interrupts (SEFIs) or data errors | -TMR<br>-Temporal TMR                                                                    |  |  |
| MGT                | Gigabit transceivers. Hits in logic can cause bursts or SEFIs. O/w bit errors in data stream              | - TMR<br>- Protocol re-writes                                                            |  |  |
| PPC                | Hard IP that is unhardened. SEFIs are prime concern                                                       | TMR or software task redundancy                                                          |  |  |
| SEL                | Higher current condition that is potentially damaging                                                     | No mitigation other than substrate addition (epi).     Circumvention techniques possible |  |  |

































